
Eur. Phys. J. B 20, 569–572 (2001) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Società Italiana di Fisica
Springer-Verlag 2001

Rules extraction in short memory time series using genetic
algorithms

L.Y. Fong and K.Y. Szetoa

Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China

Received 29 August 2000

Abstract. Data mining is performed using genetic algorithm on artificially generated time series data with
short memory. The extraction of rules from a training set and the subsequent testing of these rules provide
a basis for the predictions on the test set. The artificial time series are generated using the inverse whitening
transformation, and the correlation function has an exponential form with given time constant indicative
of short memory. A vector quantization technique is employed to classify the daily rate of return of this
artificial time series into four categories. A simple genetic algorithm based on a fixed format of rules is
introduced to do the forecasting. Comparing to the benchmark tests with random walk and random guess,
genetic algorithms yield substantially better prediction rates, between 50% to 60%. This is an improvement
compared with the 47% for random walk prediction and 25% for random guessing method.

PACS. 89.65.Gh Economics, business, and financial markets – 05.45.Tp Time series analysis – 87.23-n
Ecology and evolution

1 Introduction

After the introduction of Genetic algorithm (GA) by
Holland [1] as a classifier and the later development by
Goldberg [2], GA has found many applications in time se-
ries forecasting [3,4]. The problem of prediction is trans-
lated into one of pattern matching, learning, and general-
ization. Recently, this forecasting method, called genetic
algorithm optimizer by Szeto and Cheung [5], has been ex-
tended to multiple time series. Contrary to the approach
of stochastic dynamics, this new formulation of time series
prediction does not require the knowledge of the equation
of motion for the evolution of patterns. Rather, the fore-
casting problem is treated as one in image analysis [6]. In
the applications, the forecasting problem is mapped onto
an optimization problem with an objective function de-
scribing the probability of correct prediction, a quantity
that one tries to maximize. In order that the prediction
tool has some real utility, meaningful constraints are im-
plemented. These constraints are to maintain certain level
of the power of generalization and proximity of the distri-
bution of guess to the distribution of outcomes from the
training set [5]. Szeto and Luo [7] have discussed these
constraints in the context of the self-organization of rules.
Although these works provide many interesting insights to
the use of genetic algorithms in forecasting, we still want
to get a better understanding of the relation between the
mechanism of the extraction of rules and the nature of
the time series [8]. In order to prevent unnecessary bias

a e-mail: phszeto@ust.hk

of using real time series, we artificially generate a time
series with controllable memory function and use simple
genetic algorithm to perform extraction of prediction rules
from the data. It is the aim of this paper to compare the
result of genetic algorithm for the mining of rules in con-
trolled time series with benchmark test like the random
walk model and the random guess model.

2 Generation of time series

We generate time series with controllable memory mea-
sured by the autocorrelation function using the method of
the inverse whitening transformation: T : Y = TX , to re-
late the uncorrelated data Y to the correlated X [9]. First
let X be an n×n matrix with eigenvalues {λ1, λ2, ...λn},
and eigenvectors {φ1, φ2, ...φn}. Here φj is a n×1 column
vector. In matrix notation, this is an eigenvalue equation
XΦ = ΦΛ, where Φ denotes the eigenvector matrix of X
and Λ the eigenvalue matrix that is a diagonal matrix with
entries being the nonzero eigenvalue Λl for the correspond-
ing column of eigenvector matrix. Using T = Λ−

1
2ΦT as

the transformation matrix, the correlation matrix of the
resultant Y can be shown to be the identity matrix. Our
interest is to generate a time series with correlation ma-
trix that is X , a given matrix that can be diagonalized
with nonzero eigenvalues.

Our first step is to generate an independent, normally
distributed random variable Y with zero mean and unit
variance: Y = N(0, 1). The next step is to construct a

570 The European Physical Journal B

Fig. 1. A plot of the values for the daily rate of return (=
fractional change) of the short memory times series with τ = 5
vs. time.

Fig. 2. A plot of correlation function vs. the number of lag for
the above short memory time series.

Toeplitz matrix C with entries Cij = Cji = C(|i− j|).

C =



1 C2 C3

C2 1 C2

C3 C2 1
...

. . .
... 1


. (1)

It is a symmetric matrix with unit diagonal. The ma-
trix elements C2, C3... Cn define the memory of the re-
sultant time series. If the required time series has a short
memory, one assumes an exponentially decaying function
for these C,

C(n) = e−
n
τ . (2)

Here τ is the range of correlation and n = |i−j| is the num-
ber of days in the past. After finding the eigenvalues and
corresponding eigenvectors of C, a controlled time series
can be obtained by multiplying Y with the transformation
ΦΛ1/2Y to obtain X ,

X = ΦΛ1/2Y. (3)

Here X is a correlated time series with autocorrelation
function C. We illustrate the artificial time series with
the raw data in Figure 1, and its associated correlation
function in Figures 2 and 3.

3 Training and testing of rule

Three sets of short memory time series with 2000 data
points are produced. Their correlation functions are with

-5

-4

-3

-2

-1

0

0 5 10 15 20

Number of Lag

Lo
g(

C
or

re
la

tio
n)

Log(Correlation)

Expected Value

Fig. 3. A plot of correlation function vs. the number of lag for
the above short memory time series.

C(t) = e−
t
τ with τ = 5, 10, and 15. The time series is then

separated into two disjoint sets: the first 1000 data points
form the training set and the next 1000 points form the
test set.

3.1 Data preprocessing

In the training set, points are put into four categories. For
instance the cut-off values of the time series with short
memory with τ = 5 are −0.615, 0.030 and 0.677. These
cut-off values are chosen to ensure that the number of data
points of each class in the training set is approximately
the same. Using the cut-off values of the training set, the
data points in the test set are also labeled into four classes:
(1, 2, 3, 4). (For x(t) ≤ −0.615, x is in class 1; for−0.615 ≤
x(t) ≤ 0.030, x is in class 2; for 0.030 ≤ x(t) ≤ 0.667, x is
in class 3 and for 0.667 ≤ x(t), x is in class 4.)

3.2 Initialization of rules

A group of 100 rules is produced randomly. A rule is de-
fined by an “if” part (conditional unit) and a “then” part
(resultant unit). The conditional unit has fixed number
(=4 in this paper) of sub-units. Each sub-unit can assume
one value from the set {1, 2, 3, 4, ∗}. The sub-units are
linked by one of the two logical operators: (AND, OR).
Now for quantized values {Xt} of the time series, a sym-
bolic representation of a rule with four sub-units is

〈If [((Xt = I) and/or (Xt+1 = J)) and/or
((Xt+2 = K)) and/or (Xt+3 = L))],

then (Xt+4 = M)〉. (4)

For example, a typical rule reads

〈If [((Xt = 1) and (Xt+1 = ∗)) and
((Xt+2 = 3) or (Xt+3 = 2))],

then (Xt+4 = 4)〉. (5)

Note that the star *= don’t care symbol does not appear
in the “then” part, as we want definite prediction. In the
initialization, the “then” part has four different classes, so
that we generate 25 rules for each class. The evolution of
each subset of rules (25 for class 1, 25 for class 2, etc.)
only involves changes on the if part. This separation of
the 100 rules into 4 subsets is aimed at specialization in
the training process for each class.

L.Y. Fong and K.Y. Szeto: Rules extraction in short memory time series using genetic algorithms 571

3.3 Fitness evaluation

Initially all rules are assigned to be zero fitness. In each
training step, the rules for class k is trained by comparing
the patterns in the training set, and three possible cases
can arise:

Case 1: the “if” part of the rule does not match the
data point pattern. In this case, we cannot make predic-
tion.

Case 2: the “if” part of the rule matches the data
points in the training set. We make a prediction. When
the “then” part of the rule also matches the class of the
corresponding data point, it is counted as a correct guess;
otherwise it is counted as a wrong guess. The fitness value
of this rule i will be

Fi = Nc/Ng = Nc/(N c +Nw). (6)

Here Nc is the number of correct guess and Nw is the
number of wrong guess, so that

Ng = Nc +Nw. (7)

Case 3: there are more than one rules with the “if” part
which match the data points in the training set. We then
have to decide how to make a prediction. We make use
of the specificity of the rule. The most specific rule is the
one that has no “don’t care” and all 3 logical operator are
“AND”. Assuming the occurrence of each possible pattern
is the same, the probability of matching the “if” part of
this rule is 1/(4× 4 × 4 × 4)=1/256. On the other hand,
if there are three “don’t care” appearing in the rule, the
probability is just 1/4. Hence the more specific rule has
a lower probability to appear and contain more informa-
tion, and its prediction should be considered with more
weight than the less specific rule. Therefore, in this case,
we will choose the prediction of the more specific rule.
Note that both kinds of rules co-exist in the rule set, as
they are complementary: rule with low specificity predicts
more kinds of patterns, while rule with high specificity
gives a more precise prediction. Note also that there are
only 1024 rules without “don’t care” symbol and no “or”
operator, and they form a set with highest specificity.

3.4 Evolution of rules

We used 100 groups, each containing 100 rules. 50 groups
with fitness higher than medium are selected to survive.
There is no need to re-evaluate the fitness of the rules
in these groups in the next generation, thereby increas-
ing its efficiency compared to the roulette wheel selection
method. The remaining 50 groups of the new generation is
produced by crossover (25) and mutation (25) so that the
population size (= 100×100) remains unchanged through-
out training. The mutation and crossover are performed
only on the conditional parts, so that the number of rules
for each class in each group remained unchanged. After
1000 generations, the fittest group is selected for real test.
In Figures 4–5, we observe steps in fitness, corresponding

0

0.1

0.2

0.3

0.4

0.5

0 200 400 600 800 1000

Generation
F

itn
es

s

Best Fitness

Mean Fitness

Standard Derivation

Fig. 4. Fitness of the best chromosome, average fitness and
standard derivation vs. generation.

0

100

200

300

400

500

600

700

800

0 200 400 600 800 1000

Generation

G
ue

ss
 N

um
be

r

Total Guess

Correct Guess

Fig. 5. Total number of guess and correct guess of the best
group vs. generation

to sudden improvement in percentage of correct guess.
In time series prediction, we want to maximize the cor-
rect percentage AND the guessing percentage [10]. This
difficult requirement is partially accomplished by includ-
ing both specific rules and general rules. The former aims
to increase the correct percentage Nc while the latter to
increase total number of guess Ng.

572 The European Physical Journal B

Table 1. Comparison of prediction in terms of percentage of
correct prediction.

Correlation, C(t) e−
t
5 e−

t
10 e−

t
15

Genetic algorithm 50% 56% 57%

Random guessing 25% 25% 24%

Random walk 46% 48% 46%

4 Discussion

After training, we choose the group with highest fitness
for prediction. In this chosen group, there are 25 rules for
each class and the mechanism for making a prediction is
the same as in the training set. In general the percentage
of correct guess between 50% and 60% can be achieved.
For comparison, random guess and random walk predic-
tions are also used as benchmark. Random guess is the
simplest method of prediction as a guess is done without
previous information. The percentage of correct random
guess is only 25% as there are 4 classes in the data. Ran-
dom walk method uses the value of previous time unit to
predict the present unit. (If the last unit is 3, then the
prediction is 3 too.) This method is better than random
guess and 46% of predictions are correct. A comparison is
made in Table 1. We see that genetic algorithm performs
better than the random guess and random walk method.
Furthermore, besides providing a set of rules for forecast-
ing, GA also performs better in time series with longer
memory (larger τ). This is quite reasonable since the rules
must exploit the correlation within the time series and the
longer memory the series has, the better the data mining.
This application has also seen useful application in real
financial time series.

K.Y. Szeto acknowledges the support of grants DAG 98/99.
SC25 and RGC 6144/00P. L.Y. Fong acknowledges discussion
with classmates Mr. Lee Fukay and Mr. Cheung Ho Yin.

References

1. J.H. Holland, Adaptation in Natural and Artificial Systems
(Ann Arbor, MI: University of Michigan Press, 1975).

2. D.E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning (Addison Wesley, 1989).

3. K.Y. Szeto, K.H. Cheung, Proceedings of the World Mul-
ticonference on Systemic, Cybernetics and Informatics,
Caracas 3, 390–396 (1997).

4. K.Y. Szeto, K.O. Chan, K.H. Cheung, Contributed paper
of Proceedings of the Fourth International Conference on
Neural Networks in the Capital Markets Progress in Neu-
ral Processing, Decision Technologies for Financial Engi-
neering, edited by A.S. Weigend, Y. Abu-Mostafa, A.P.N.
Refenes, (World Scientific, NNCM-96, 1997), pp. 95–103.

5. K.Y. Szeto, K.H. Cheung, Proceedings of the International
Symposium on Intelligent Data Engineering and Learning,
Hong Kong (IDEAL’98, 1998) pp. 127–133.

6. T. Froehlinghaus, K.Y. Szeto, Proceedings of the Interna-
tional Conference on Neural Information Processing, Hong
Kong, 1996, Springer Verlag (ICONIP’96, 1996) Vol. 2,
pp. 799–802.

7. K.Y. Szeto, P.X. Luo, Self Organized Genetic Algorithm
in forecasting stock market, Proceeding of the the Sixth
International Conference “Forecasting Financial Markets”
FFM’99 (London, 26-28 May 1999, CD-ROM).

8. S. Zemke, Physica A 269, 177 (1999).
9. Keinosuke Fukunaga, Introduction to Statistical Pattern

Recognition (Academic Press, 1990).
10. D.G. Papageorgiou, I.N. Demetropoulos, I.E. Lagaris,

Computer Physics Communications 109, 227 (1998).

